z-logo
open-access-imgOpen Access
Emerging molecular basis of hematogenous metastasis in gastric cancer
Author(s) -
Jing Zhong,
Yan Chen,
Liangjing Wang
Publication year - 2016
Publication title -
world journal of gastroenterology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.427
H-Index - 155
eISSN - 2219-2840
pISSN - 1007-9327
DOI - 10.3748/wjg.v22.i8.2434
Subject(s) - intravasation , metastasis , microvesicles , cancer research , cancer , tumor microenvironment , epithelial–mesenchymal transition , biology , cancer cell , vascular endothelial growth factor , extracellular matrix , pathology , immunology , medicine , microrna , microbiology and biotechnology , biochemistry , genetics , tumor cells , gene , vegf receptors
Lymphatic metastasis is commonly observed in gastric cancer (GC), but hematogenous metastasis is more likely responsible for the cancer-related mortality. Since Stephen Paget first introduced the "seed and soil hypothesis" a century ago, growing evidence recognizes that numerous essential secreted factors and signaling pathway effectors participate in the pre-metastatic niche formation and distant organ metastasis. The cross-talk between GC cells and surrounding microenvironment may consist of a series of interrelated steps, including epithelial mesenchymal transition, intravasation into blood vessels, circulating tumor cell translocation, and secondary organ metastasis. Secreted factors including vascular endothelial growth factor (VEGF), matrix metalloproteinases and cancer-derived extracellular vesicles, especially exosomes, are essential in formation of premetastatic niche. Circulating tumor cells and microRNAs represent as ''metastatic intermediates'' between primary tumors and sites of dissemination. Many biomarkers have been identified as novel metastatic markers and prognostic effectors. In addition, molecular therapy has been designed to target biomarkers such as growth factors (human epidermal growth factor receptor 2, VEGF) and chemokines, although they have not clearly proven to be effective in inhibiting GC metastasis in clinical trials. In this review, we will systematically discuss the emerging molecules and their microenvironment in hematogenous metastasis of GC, which may help us to find new therapeutic strategies in the future.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here