z-logo
open-access-imgOpen Access
Asymmetric dimethylarginine as a mediator of vascular dysfunction in cirrhosis
Author(s) -
Paloma Lluch,
Gloria Segarra,
Pascual Medina
Publication year - 2015
Publication title -
world journal of gastroenterology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.427
H-Index - 155
eISSN - 2219-2840
pISSN - 1007-9327
DOI - 10.3748/wjg.v21.i32.9466
Subject(s) - asymmetric dimethylarginine , splanchnic , cirrhosis , medicine , portal hypertension , enos , endocrinology , vasodilation , hyperdynamic circulation , nitric oxide synthase , vascular resistance , portal venous pressure , nitric oxide , arginine , blood pressure , biology , blood flow , biochemistry , amino acid
Cirrhosis is associated with marked abnormalities in the circulatory function that involve a reduction in systemic vascular resistance. An important cause of this vasodilatation is the increased production or activity of nitric oxide (NO) in the splanchnic circulation. During portal hypertension and cirrhosis an increased endothelial NO synthase (eNOS) activity is demonstrated in splanchnic vessels. In contrast, the activity of eNOS in the cirrhotic liver is decreased, which suggests a different regulation of eNOS in the liver and in the splanchnic vessels. Asymmetric dimethylarginine (ADMA) is an endogenous NO inhibitor and higher plasma levels of ADMA are related to increased cardiovascular risk in both the general population and among patients with cirrhosis. It has been demonstrated that the liver is a key player in the metabolism of ADMA. This observation was further supported by investigations in human patients, showing a close correlation between ADMA plasma levels and the degree of hepatic dysfunction. ADMA is degraded to citrulline and dimethylamine by dimethylarginine dimethylaminohydrolases (DDAHs). DDAHs are expressed as type 1 and 2 isoforms and are widely distributed in various organs and tissues, including the liver. In this review, we discuss experimental and clinical data that document the effects of dimethylarginines on vascular function in cirrhosis. Our increasing understanding of the routes of synthesis and metabolism of methylarginines is beginning to provide insights into novel mechanisms of liver disease and allowing us to identify potential therapeutic opportunities.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here