
Nuclear receptors and pathogenesis of pancreatic cancer
Author(s) -
S. Polvani
Publication year - 2014
Publication title -
world journal of gastroenterology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.427
H-Index - 155
eISSN - 2219-2840
pISSN - 1007-9327
DOI - 10.3748/wjg.v20.i34.12062
Subject(s) - nuclear receptor , biology , receptor , transcription factor , cancer research , retinoid x receptor , retinoid x receptor alpha , estrogen receptor , estrogen related receptor gamma , androgen receptor , peroxisome proliferator activated receptor , microbiology and biotechnology , cancer , genetics , gene , breast cancer , prostate cancer
Pancreatic ductal adenocarcinoma (PDAC) is a devastating disease with a median overall survival time of 5 mo and the five years survival less than 5%, a rate essentially unchanged over the course of the years. A well defined progression model of accumulation of genetic alterations ranging from single point mutations to gross chromosomal abnormalities has been introduced to describe the origin of this disease. However, due to the its subtle nature and concurring events PDAC cure remains elusive. Nuclear receptors (NR) are members of a large superfamily of evolutionarily conserved ligand-regulated DNA-binding transcription factors functionally involved in important cellular functions ranging from regulation of metabolism, to growth and development. Given the nature of their ligands, NR are very tempting drug targets and their pharmacological modulation has been widely exploited for the treatment of metabolic and inflammatory diseases. There are now clear evidences that both classical ligand-activated and orphan NR are involved in the pathogenesis of PDAC from its very early stages; nonetheless many aspects of their role are not fully understood. The purpose of this review is to highlight the striking connections that link peroxisome proliferator activated receptors, retinoic acid receptors, retinoid X receptor, androgen receptor, estrogen receptors and the orphan NR Nur, chicken ovalbumin upstream promoter transcription factor II and the liver receptor homologue-1 receptor to PDAC development, connections that could lead to the identification of novel therapies for this disease.