
Performance of Generalized Receiver Employed by Broadband Multicarrier DS-CDMA System Using Space-Time Spreading-Assisted Transmit Diversity
Author(s) -
Vyacheslav Tuzlukov
Publication year - 2021
Publication title -
wseas transactions on communications/wseas transactions on communications
Language(s) - English
Resource type - Journals
eISSN - 2224-2864
pISSN - 1109-2742
DOI - 10.37394/23204.2021.20.21
Subject(s) - code division multiple access , computer science , multiuser detection , telecommunications link , fading , electronic engineering , transmit diversity , wireless , bit error rate , wireless broadband , detector , rayleigh fading , spread spectrum , diversity scheme , diversity combining , telecommunications , wireless network , engineering , channel (broadcasting)
In this paper the multicarrier direct-sequence code-division multiple access (MC DS-CDMA) using space-time spreading assisted transmit diversity is investigated in the context of broadband wireless communi-cations systems constructed based on the generalized approach to signal processing in noise over frequency-se-lective Rayleigh fading channels. We consider the issue of parameter design for the sake of achieving high-ef-ficiency communications in various dispersive environments. In contrast to the conventional MC DS-CDMA wireless communication system employing the time (T)-domain spreading only, in the present paper the broad-band wireless MC DS-CDMA wireless communication schemes employ both the time (T)-domain and frequen-cy (F)-domain spreading, i.e., employ the TF-domain spreading. The bit-error rate (BER) performance of the space-time spreading assisted broadband MC DS-CDMA wireless communications system is investigated for down-link transmissions associated with the single user and multiuser generalized detectors and is compared with that of the single user correlation detector and the multiuser decorrelating detector. Our study demonstra-tes that with appropriately selecting the system parameters, the broadband MC DS-CDMA wireless communi-cation system using the space-time spreading assisted transmit diversity constitutes a promising downlink tran-smission scheme. This scheme is capable to support ubiquitous communications over diverse communication environments without the BER performance degradation