
Design Calculations of the Limiting Characteristics of Heat Pipes for Cooling Active Phased Antenna Arrays
Author(s) -
S. Radaev
Publication year - 2021
Publication title -
wseas transactions on applied and theoretical mechanics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.211
H-Index - 10
eISSN - 2224-3429
pISSN - 1991-8747
DOI - 10.37394/232011.2021.16.15
Subject(s) - heat pipe , boiling , materials science , mechanics , coolant , overheating (electricity) , thermodynamics , thermal , heat transfer , critical heat flux , heat flux , nuclear engineering , physics , engineering , electrical engineering
The article provides an algorithm for calculating the limiting characteristics of heat pipes for cooling active phased antenna arrays at a given saturation temperature. The maximum transmitted power is determined taking into account the limitations of the heat pipes operation by the capillary limit, by boiling (transition to film boiling, boiling limit), by the sonic limit at which the speed of steam reaches the speed of sound (sonic limit), by the entrainment of droplets liquid coolant from the surface of the wick with a counter flow of steam (entertainment limit) and viscous limit, which is realized at low temperatures (viscous limit). It is shown that an increase in the thickness of the wick and its porosity may be necessary to increase the capillary limit of heat pipes, while an increase in the thickness of the wick increases the thermal resistance of the tube and, accordingly, can lead to overheating of the cooled elements. Based on the above algorithm, design calculations for two types of heat pipes have been carried out. The dependences of various limits of the heat pipe on the operating temperature are plotted. Based on the above algorithm, calculations were performed for two types of heat pipes.