Open Access
A Multicriteria, Bat Algorithm Approach for Computing the Range Limited Routing Problem for Electric Trucks
Author(s) -
Julian Scott Yeomans
Publication year - 2021
Publication title -
wseas transactions on circuits and systems/wseas transactions on circuits
Language(s) - English
Resource type - Journals
eISSN - 2224-266X
pISSN - 1109-2734
DOI - 10.37394/23201.2021.20.13
Subject(s) - truck , computer science , transshipment (information security) , vehicle routing problem , process (computing) , range (aeronautics) , metaheuristic , sustainability , analytic hierarchy process , operations research , routing (electronic design automation) , transport engineering , algorithm , engineering , automotive engineering , computer network , computer security , operating system , ecology , biology , aerospace engineering
As a result of increasing urban intensification, civic planners have devoted additional resources to more sustainability-focused logistics planning. Electric vehicles have proved to be both a lower cost alternative and more environmentally friendly than the more ubiquitous internal combustion engine vehicles. However, the predominant decision-making approaches employed by businesses and municipalities are not necessarily computationally conducive for the optimization and evaluation of urban transportation systems involving electric vehicles. An innovative modelling and planning approach is proposed to enable urban planners to more readily evaluate the contribution of electric vehicles in city logistics and to support the decision-making process. Specifically, this paper provides a multicriteria modelling-to-generate-alternatives (MGA) decision-support procedure that employs the Bat Algorithm (BA) metaheuristic for generating sets of alternatives for electric vehicle planning in urban transshipment problems. The efficacy of this multicriteria, BA-driven MGA approach for creating planning alternatives is demonstrated on an urban transshipment problem involving electric trucks.