Premium
Rare plants are common where you find them
Author(s) -
Lesica Peter,
Yurkewycz Raymond,
Crone Elizabeth E
Publication year - 2006
Publication title -
american journal of botany
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.218
H-Index - 151
eISSN - 1537-2197
pISSN - 0002-9122
DOI - 10.3732/ajb.93.3.454
Subject(s) - abundance (ecology) , biology , endemism , ecology , range (aeronautics) , biological dispersal , relative abundance distribution , macroecology , taxon , genetic algorithm , relative species abundance , species richness , population , materials science , demography , sociology , composite material
Broad patterns in distribution and abundance can elucidate processes of evolution. A positive association between local abundance and the size of the geographic range has been demonstrated for closely related species across many taxa. This pattern is usually explained by assuming that species with smaller ranges are ecologically inferior (e.g., poor competitors or dispersers). Many areas of high endemism support local species that have evolved recently. The distribution of these neoendemics may reflect historical processes not accounted for by ecological, equilibrium hypotheses. We asked whether such traditional macroecological hypotheses also applied to the local abundance of seven narrowly endemic species and ecologically similar widespread congeners in the northern Rocky Mountains. For each of the 14 species, we estimated abundance of five randomly chosen populations by counting plants in 10 randomly located plots. The association between range size and local abundance was not positive. Instead, all seven narrow endemics were more abundant than their widespread congeners. Ecological specialization or differences in dispersal ability are not likely explanations for our results. We believe the local abundance of narrowly endemic species may be a sign of recent speciation. Most or all of our narrowly distributed species have probably not yet had time to spread to their full potential. Furthermore, theory predicts that speciation is more likely to occur in locally abundant populations. Our results suggest that strictly ecological mechanisms cannot explain abundance and distribution in regions with high neoendemism.