Premium
Past, present, and future research in bipolar lichen‐forming fungi and their photobionts
Author(s) -
GarridoBenavent Isaac,
PérezOrtega Sergio
Publication year - 2017
Publication title -
american journal of botany
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.218
H-Index - 151
eISSN - 1537-2197
pISSN - 0002-9122
DOI - 10.3732/ajb.1700182
Subject(s) - biological dispersal , lichen , vicariance , biology , disjunct , ecology , southern hemisphere , biogeography , boreal , taiga , phylogeography , phylogenetics , population , biochemistry , demography , sociology , gene
Compared to other organisms, such as vascular plants or mosses, lichen‐forming fungi have a high number of species occurring in both northern and southern hemispheres but are largely absent from intermediate, tropical latitudes. For instance, ca. 160 Antarctic species also occur in polar areas or mountainous temperate regions of the northern hemisphere. Early interpretations of this particular distribution pattern were made in terms of vicariance or long‐distance dispersal. However, it was not until the emergence of phylogenetics and the possibility of dating past diversification and colonization events that these initial hypotheses started to be evaluated. The premise of a relatively recent colonization of the southern hemisphere by boreal lichens through long‐distance dispersal has gained support in recent studies based on either the comparison of genetic affinities (i.e., tree topology) or more robust, statistical migratory models. Still, the scarcity of such studies and a concern that taxonomic concepts for bipolar lichens are often too broad preclude the generation of sound explanations on the mechanisms and origin of such fascinating disjunct distributions. This review provides an up‐to‐date overview of bipolar distributions in lichen‐forming fungi and their photobionts. Evidence provided by recent, molecular‐based studies as well as data on the type of lichen reproduction, dispersal ability, photobiont identity and availability, and habitat preferences are brought together to discuss how and when these distributions originated and their genetic footprints. Ideas for future prospects and research are also discussed.