Premium
A variation on chloroplast development: The bizonoplast and photosynthetic efficiency in the deep‐shade plant Selaginella erythropus
Author(s) -
Sheue ChiouRong,
Liu JianWei,
Ho JiaFang,
Yao AiWen,
Wu YehHua,
Das Sauren,
Tsai ChiChu,
Chu HsiuAn,
Ku Maurice S. B.,
Chesson Peter
Publication year - 2015
Publication title -
american journal of botany
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.218
H-Index - 151
eISSN - 1537-2197
pISSN - 0002-9122
DOI - 10.3732/ajb.1400485
Subject(s) - biology , botany , photosynthesis , shoot , chloroplast , selaginella , photosynthetic capacity , biochemistry , gene
• Premise of the study: Chloroplast development and structure are highly conserved in vascular plants, but the bizonoplast of Selaginella is a notable exception. In the shade plant S. erythropus , each dorsal epidermal cell contains one bizonoplast, while other cells have normal chloroplasts. Our quest was to (1) determine the origin of bizonoplasts, (2) explore developmental plasticity, and (3) correlate developmental changes with photosynthetic activity to provide insights unavailable in other green plants with more constrained development. • Methods: Bizonoplast development was studied in juvenile prostrate and older erect shoots of S. erythropus . Plastid plasticity was studied in plants cultivated under different light conditions. Chlorophyll fluorescence was measured and correlated with photosynthetic activity. • Key results: The bizonoplast originates from a proplastid, forming a distinctive upper zone rapidly after exposure to low light. In the prostrate shoots, the proplastid develops through early stages only. When the shoot becomes erect, the proplastid soon develops into a mature bizonoplast. Erect shoots have significantly higher photosynthetic efficiency than prostrate shoots. No bizonoplasts were found in the plants growing in high light, where 2–4 spheroidal chloroplasts formed, or with light from below. • Conclusions: The upper zone develops above a normal‐looking chloroplast structure to produce a bizonoplast. Bizonoplast developmental plasticity suggests that regular lamellar structure and monoplastidy are adaptations to deep shade environments. Such novel variation in S. erythropus is in stark contrast to known plastid development in other vascular plants, possibly reflecting retention of developmental flexibility in the basal clade, Lycophyta, to which it belongs.