Premium
Comparative floral development in Lithospermum (Boraginaceae) and implications for the evolution and development of heterostyly
Author(s) -
Cohen James I.,
Litt Amy,
Davis Jerrold I.
Publication year - 2012
Publication title -
american journal of botany
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.218
H-Index - 151
eISSN - 1537-2197
pISSN - 0002-9122
DOI - 10.3732/ajb.1100329
Subject(s) - heterostyly , biology , boraginaceae , botany , evolutionary developmental biology , evolutionary biology , stamen , pollen
• Premise of the study: The evolution and development of floral developmental patterns were investigated in three heterostylous and three homostylous species of Lithospermum to determine whether species that independently acquired the same floral form follow the same pattern of development or different patterns. • Methods: Using light and scanning electron microscopy, we observed developmental patterns in flowers at different stages of maturity. These patterns were compared within individual species, between heterostylous morphs, and among heterostylous and homostylous species. • Key results: Although heterostyly has been determined by phylogenetic analysis to have originated independently in each of the heterostylous species, flowers of the long‐style morph of each species follow similar patterns of gross development, as do those of the short‐style morph. In addition, the flowers of each morph develop in a manner similar to those of their respective homostylous, herkogamous relatives. However, the developmental patterns of the stylar epidermal cells differ among these species and between heterostylous and homostylous species. • Conclusions: Floral developmental patterns in homostylous species provide evidence that modification of specific traits, such as patterns of stylar growth, can lead to the evolution of heterostyly. The developmental changes that affect the positions of the stigmas and anthers in each morph likely involve either temporal or spatial modifications of gene function. The floral developmental patterns described here and the occurrence of multiple types of herkogamy within some species of Lithospermum provide evidence that heterostylous species in the genus have originated via distinct evolutionary developmental pathways.