z-logo
Premium
Early floral development of Heliconia latispatha (Heliconiaceae), a key taxon for understanding the evolution of flower development in the Zingiberales
Author(s) -
Kirchoff Bruce K.,
Lagomarsino Laura P.,
Newman Winnell H.,
Bartlett Madelaine E.,
Specht Chelsea D.
Publication year - 2009
Publication title -
american journal of botany
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.218
H-Index - 151
eISSN - 1537-2197
pISSN - 0002-9122
DOI - 10.3732/ajb.0800305
Subject(s) - biology , botany , bract , synapomorphy , inflorescence , clade , phylogenetics , biochemistry , gene
We present new comparative data on early floral development of Heliconia latispatha , an ecologically and horticulturally important tropical plant within the order Zingiberales. Modification of the six members of two androecial whorls is characteristic of Zingiberales, with a reduction in number of fertile stamen from five or six in the banana families (Musaceae, Strelitziaceae, Lowiaceae, and Heliconiaceae) to one in Costaceae and Zingiberaceae and one‐half in Marantaceae and Cannaceae. The remaining five infertile stamens in these later four families (the ginger families) are petaloid, and in Costaceae and Zingiberaceae fuse together to form a novel structure, the labellum. Within this developmental sequence, Heliconiaceae share with the ginger families the possession of an antisepalous staminode, a synapomorphy that has been used to place Heliconiaceae as sister to the ginger family clade. Here, we use epi‐illumination light microscopy and reconstruction of serial sections to investigate the ontogeny of the Heliconia flower with emphasis on the ontogeny of the staminode. We compare floral development in Heliconia with that previously described for other species of Zingiberales. A comparison of floral structure and development across Zingiberales is presented to better understand the evolution of the flower in this charismatic group of tropical plants.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here