Premium
Should structure–function relations be considered separately for homobaric vs. heterobaric leaves?
Author(s) -
Liakoura Vally,
Fotelli Mariangela N.,
Rennenberg Heinz,
Karabourniotis George
Publication year - 2009
Publication title -
american journal of botany
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.218
H-Index - 151
eISSN - 1537-2197
pISSN - 0002-9122
DOI - 10.3732/ajb.0800166
Subject(s) - biology , photosynthesis , vascular bundle , lamina , botany , shrub
Tree and shrub species can be differentiated into two major groups based on their substantially different leaf anatomy: heterobaric and homobaric. In contrast to homobaric leaves, heterobaric leaves have bundle sheath extensions (BSEs) that create transparent regions on their lamina. Recent studies have shown that BSEs transfer visible light to internal mesophyll layers, thus affecting the photosynthetic performance of heterobaric leaves. Whether the two leaf types also differ in other functional and structural traits has not been addressed, nor have any structure–function relations. Here, we measured key anatomical and physiological parameters and tested their relationships in 30 species with different leaf types. Heterobaric leaves were thinner with lower leaf mass per area, had higher nitrogen concentration per mass, were 13 C‐enriched, and achieved comparable photosynthetic capacity per area but had higher photosynthetic capacity per mass compared to homobaric leaves. Relations between leaf construction cost, nitrogen concentration, and photosynthesis followed the general pattern of the “leaf economic spectrum,” but differed between homobaric and heterobaric leaves. We suggest that the mechanisms controlling these relations differ between the two leaf types, presumably due to their distinct anatomy.