z-logo
Premium
Investigating species boundaries in the Giliopsis group of Ipomopsis (Polemoniaceae): Strong discordance among molecular and morphological markers
Author(s) -
Wood Troy E.,
Nakazato Takuya
Publication year - 2009
Publication title -
american journal of botany
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.218
H-Index - 151
eISSN - 1537-2197
pISSN - 0002-9122
DOI - 10.3732/ajb.0800153
Subject(s) - biology , introgression , sympatric speciation , evolutionary biology , reproductive isolation , population , genetics , gene , demography , sociology
As a first step in elucidating mechanisms of speciation in the Giliopsis group of Ipomopsis (Polemoniaceae), we examined patterns of morphological and genetic differentiation and crossability. This group comprises three species that diverged very recently: two perennials, I. guttata and I. tenuifolia , and one annual, I. effusa . Analysis of phenotypic variation established that the three species are distinct for floral characters, and this differentiation is maintained in a locality containing both perennial species. Next, we assessed the genealogical relationships with AFLPs. All sampled individuals of I. effusa clustered together, a result in accord with its genetic isolation. The perennials, which retain interfertility, were not resolved as sister taxa. Rather, individuals sampled from the single I. guttata population that is sympatric with I. tenuifolia were genetically more similar to I. tenuifolia samples than they were to conspecifics. This pattern may be due to substantial introgression of I. tenuifolia genomic regions that do not contribute to floral phenotype in I. guttata . Our result adds to mounting evidence that plant species, as defined by morphological characters, are often not genomically cohesive. Taken together, our data warrant caution in delimiting species with genetic markers alone, and, importantly, suggest that selection on species‐diagnostic morphological characters can be sufficiently strong to counteract extensive gene flow.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here