
Programmed Death Ligand-1 (PD-L1) Regulated by NRF-2/MicroRNA-1 Regulatory Axis Enhances Drug Resistance and Promotes Tumorigenic Properties in Sorafenib-Resistant Hepatoma Cells
Author(s) -
Dong Liu,
Fenyong Sun,
Dan Wang,
Tao Wang,
Jiangtao Peng,
Jian-Qiong Feng,
Hua Li,
Chao Wang,
Daijun Zhou,
Hong Luo,
Zeng-Qiang Fu,
Tao Zhang
Publication year - 2020
Publication title -
oncology research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.267
H-Index - 57
eISSN - 1555-3906
pISSN - 0965-0407
DOI - 10.3727/096504020x15925659763817
Subject(s) - sorafenib , cancer research , in vivo , microrna , carcinogenesis , downregulation and upregulation , hepatocellular carcinoma , pd l1 , drug resistance , biology , chemistry , pharmacology , immune system , cancer , immunology , immunotherapy , biochemistry , gene , genetics , microbiology and biotechnology
Sorafenib, a multityrosine kinase inhibitor, is a standard treatment for advanced hepatocellular carcinoma (HCC), but the clinical response to sorafenib is seriously limited by drug resistance. Programmed death ligand-1 (PD-L1) is one of the most important inhibitory molecules involved in tumor immune evasion. Recently, it has been reported that PD-L1 could play crucial roles in drug resistance of many kinds of cancers. However, the expression, function, and regulation of PD-L1 in sorafenib-resistant hepatoma cells remain unclear. In this study, we reported that PD-L1 was overexpressed in sorafenib-resistant hepatoma cells, and shRNA-mediated PD-L1 depletion attenuated drug resistance and suppressed the migration, invasion, colony formation, and tumorigenesis in sorafenib-resistant hepatoma cells in vitro and in vivo. Mechanistic investigations indicated that loss of microRNA-1 (miR-1), a tumor-suppressive microRNA, contributed to the PD-L1 upregulation in sorafenib-resistant hepatoma cells, and PD-L1 was a direct regulatory target of miR-1. Further study revealed that an oncogenic transcriptional factor, nuclear factor E2-related factor 2 (NRF-2), was induced in sorafenib-resistant hepatoma cells and inhibited expression of miR-1 in vitro. From molecular mechanism insight back to the functional verification, we eventually demonstrated that miR-1 executed its tumor-suppressive effects on drug resistance and other malignant properties in sorafenib-resistant hepatoma cells partially by PD-L1 inhibition in vitro and in vivo. In conclusion, our data suggested that a NRF-2/miR-1/PD-L1 regulatory axis contributed to the development and maintenance of drug resistance and other tumorigenic properties in sorafenib-resistant hepatoma cells and provided a potential therapeutic target for overcoming sorafenib resistance in HCC.