
MicroRNA-101 Targets CXCL12-Mediated Akt and Snail Signaling Pathways to Inhibit Cellular Proliferation and Invasion in Papillary Thyroid Carcinoma
Author(s) -
Fang Chen,
Dong Yang,
Yuhua Ru,
Shan Cao,
Gao Aishe
Publication year - 2019
Publication title -
oncology research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.267
H-Index - 57
eISSN - 1555-3906
pISSN - 0965-0407
DOI - 10.3727/096504018x15426763753594
Subject(s) - cancer research , microrna , protein kinase b , thyroid carcinoma , biology , signal transduction , pi3k/akt/mtor pathway , snail , cell growth , apoptosis , microbiology and biotechnology , thyroid , endocrinology , gene , genetics , ecology
Escalating evidence suggests that microRNA-101 (miR-101) is implicated in the development and progression of various cancers, including papillary thyroid carcinoma (PTC). However, the biological function and molecular mechanisms of miR-101 in PTC are still unclear. In this study, we demonstrated that miR-101 expression was significantly decreased in PTC tissues and cell lines. Clinically, a low level of miR-101 was positively associated with advanced histological stages and lymph node and distant metastases. The expression of CXCL12 was negatively correlated with miR-101 level in PTC. CXCL12 was validated as a direct target of miR-101 in PTC cells. Functional experiments proved that miR-101 markedly reduced the proliferation, apoptosis escape, migration, and invasion of PTC cells. Moreover, CXCL12 restoration rescued the suppressive effects of miR-101 on PTC cells by activating Akt- and EMT-associated signaling pathways. Overall, miR-101 exerts oncostatic effects on PTC by downregulating CXCL12 and repressing its downstream Akt and Snail signaling pathways, suggesting that miR-101/CXCL12/Akt or Snail axis may serve as a potential therapeutic target for PTC.