z-logo
open-access-imgOpen Access
Knockdown of Urothelial Carcinoma-Associated 1 Suppressed Cell Growth and Migration Through Regulating miR-301a and CXCR4 in Osteosarcoma MHCC97 Cells
Author(s) -
Guanghu Zhu,
Xialei Liu,
Yonghui Su,
Fangen Kong,
Hong Xiao,
Zifan Lin
Publication year - 2018
Publication title -
oncology research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.267
H-Index - 57
eISSN - 1555-3906
pISSN - 0965-0407
DOI - 10.3727/096504018x15201143705855
Subject(s) - gene knockdown , cell growth , viability assay , cancer research , wnt signaling pathway , transfection , biology , cxcr4 , cell migration , microbiology and biotechnology , apoptosis , osteosarcoma , cell , cell culture , signal transduction , immunology , chemokine , biochemistry , genetics , immune system
Liver cancer is one of the most common malignancies in the world and a leading cause of cancer-related mortality. Accumulating evidence has highlighted the critical role of long noncoding RNAs (lncRNAs) in various cancers. The present study aimed to explore the role of lncRNA urothelial carcinoma-associated 1 (UCA1) in cell growth and migration in MHCC97 cells and its underlying mechanism. First, we assessed the expression of UCA1 in MHCC97 and three other cell lines by RT-qPCR. Then the expression of UCA1, miR-301a, and CXCR4 in MHCC97 cells was altered by transient transfection. The effects of UCA1 and miR-301 on cell viability, migration, invasion, and apoptosis were assessed. The results revealed that UCA1 expression was relatively higher in MHCC97 cells than in MG63, hFOB1.19, and OS-732 cells. Knockdown of UCA1 reduced cell viability, inhibited migration and invasion, and promoted cell apoptosis. However, the effect of UCA1 knockdown on cell growth and migration was blocked by miR-301a overexpression, whose expression was regulated by UCA1. We also found that miR-301a positively regulated CXCR4 expression. CXCR4 inhibition reversed the effect of miR-301a overexpression on cell growth and migration. Moreover, miR-301a activated the Wnt/β-catenin and NF-κB pathways via regulating CXCR4. The present study demonstrated that UCA1 inhibition exerted an antigrowth and antimigration role in MHCC97 cells through regulating miR-301a and CXCR4 expression.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here