z-logo
open-access-imgOpen Access
MicroRNA-623 Targets Cyclin D1 to Inhibit Cell Proliferation and Enhance the Chemosensitivity of Cells to 5-Fluorouracil in Gastric Cancer
Author(s) -
Lihua Jiang,
Wenchuan Yang,
Wenkai Bian,
Hailin Yang,
Xia Wu,
Yuhua Li,
Wen Feng,
Xuejian Liu
Publication year - 2018
Publication title -
oncology research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.267
H-Index - 57
eISSN - 1555-3906
pISSN - 0965-0407
DOI - 10.3727/096504018x15193469240508
Subject(s) - cyclin d1 , microrna , cancer research , cell growth , biology , cancer , apoptosis , cell cycle , gene , genetics
The dysregulation of microRNAs (miRNAs) plays an important function in the onset and progression of gastric cancer (GC). In addition, aberrantly expressed miRNAs affect the chemosensitivity of GC cells to chemotherapeutic drugs. Hence, miRNA-based targeted therapy might be applied to treat patients with GC exhibiting chemotherapeutic resistance. In this study, miRNA-623 (miR-623) expression was downregulated in GC tissues and cell lines. Functional analysis showed that the restored miR-623 expression could inhibit the proliferation of GC cells and enhance their chemosensitivity to 5-FU via the cell apoptosis pathway. Cyclin D1 (CCND1) was identified as a direct target gene of miR-623 in GC. The overexpressed CCND1 in GC tissues was negatively correlated with miR-623 level. The recovered CCND1 expression counteracted the effects of miR-623 on GC cell proliferation, chemosensitivity, and 5-FU-induced apoptosis. Thus, our results suggest that miR-623 might function as a tumor suppressor in GC and could be a promising therapeutic target for patients with GC, especially those with chemotherapeutic resistance.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here