z-logo
open-access-imgOpen Access
Ectopic Expression of miR-147 Inhibits Stem Cell Marker and Epithelial‐Mesenchymal Transition (EMT)-Related Protein Expression in Colon Cancer Cells
Author(s) -
Xiaofei Ning,
Cong Wang,
Meng Zhang,
Kecheng Wang
Publication year - 2019
Publication title -
oncology research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.267
H-Index - 57
eISSN - 1555-3906
pISSN - 0965-0407
DOI - 10.3727/096504018x15179675206495
Subject(s) - epithelial–mesenchymal transition , sox2 , cancer stem cell , homeobox protein nanog , cancer research , wnt signaling pathway , ectopic expression , stem cell marker , biology , stem cell , microrna , survivin , vimentin , mesenchymal stem cell , colorectal cancer , cancer , cell culture , embryonic stem cell , microbiology and biotechnology , immunology , metastasis , induced pluripotent stem cell , signal transduction , immunohistochemistry , genetics , gene
Colon cancer is one of the most common cancers in the world. Epithelial-to-mesenchymal transition (EMT) is a crucial step in tumor progression and is also involved in the acquisition of stem cell-like properties. Some miRNAs have been shown to function as either tumor suppressors or oncogenes in colon cancer. Here we investigated the role of miR-147 in the regulation of the stem cell-like traits of colon cancer cells. We observed that miR-147 was downregulated in several colon cancer cell lines, and overexpressed miR-147 decreased the expression of cancer stem cell (CSC) markers OCT4, SOX2, and NANOG in the colon cancer cell lines HCT116 and SW480. Overexpressed miR-147 inhibited EMT by increasing the expression of epithelial markers E-cadherin and α-catenin while decreasing the expression of mesenchymal markers fibronectin and vimentin. Moreover, activation of EMT by TGF-β1 treatment significantly counteracted the inhibitive effect of miR-147 on the expression of CSC markers OCT4, SOX2, and NANOG, supporting the idea that overexpressing miR-147 inhibited stem cell-like traits by suppressing EMT in colon cancer. In addition, we found that overexpressed miR-147 downregulated the expression of β-catenin, c-myc, and survivin, which were related to the Wnt/β-catenin pathway. Moreover, treatment of miR-147 mimic-transfected cells with the Wnt/β-catenin pathway activator LiCl attenuated the inhibitive effect of the miR-147 mimic on the EMT and stem cell-like traits of colon cancer cells, indicating that ectopic expression of miR-147 inhibited stem cell-like traits in colon cancer cells by suppressing EMT via the Wnt/β-catenin pathway. In summary, our present study highlighted the crucial role of miR-147 in the inhibition of the stem cell-like traits of colon cancer cells and indicated that miR-147 could be a promising therapeutic target for colon cancer treatment.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here