
MicroRNA-212 Targets Mitogen-Activated Protein Kinase 1 to Inhibit Proliferation and Invasion of Prostate Cancer Cells
Author(s) -
Bo Hu,
Xunbo Jin,
Jianbo Wang
Publication year - 2018
Publication title -
oncology research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.267
H-Index - 57
eISSN - 1555-3906
pISSN - 0965-0407
DOI - 10.3727/096504018x15154112497142
Subject(s) - microrna , oncogene , prostate cancer , cancer research , cell growth , biology , apoptosis , downregulation and upregulation , cancer , cell cycle , western blot , cell , gene , genetics
Prostate cancer (PCa) is the second most commonly diagnosed malignancy and the fifth leading cause of cancer-related deaths in males worldwide. MicroRNAs (miRNAs) may serve as important regulators in PCa occurrence and development. Therefore, understanding the expression and functions of PCa-related miRNAs may be beneficial for the identification of novel therapeutic methods for patients with PCa. In this study, miRNA-212 (miR-212) was evidently downregulated in PCa tissues and several PCa cell lines. Functional assays showed that the resumption of miR-212 expression attenuated cell proliferation and invasion and increased the apoptosis of PCa. In addition, mitogen-activated protein kinase 1 (MAPK1), a well-known oncogene, was identified as a novel target of miR-212 in PCa, as confirmed by bioinformatics, luciferase reporter assay, qRT-PCR, and Western blot analysis. Furthermore, MAPK1 expression was upregulated in PCa tissues and inversely correlated with miR-212 expression. Rescue experiments also demonstrated that restored MAPK1 expression reversed the tumor-suppressing effects of miR-212 on PCa cell proliferation, invasion, and apoptosis. In conclusion, miR-212 may exert tumor-suppressing roles in PCa by regulating MAPK1 and could be a novel therapeutic target for treatment of patients with this malignancy.