z-logo
open-access-imgOpen Access
MicroRNA-519d-3p Inhibits Proliferation and Promotes Apoptosis by Targeting HIF-2α in Cervical Cancer Under Hypoxic Conditions
Author(s) -
Lixia Jiang,
Shanshan Shi,
Qiaofa Shi,
Huijuan Zhang,
Xinbing Yu,
Tianyu Zhong
Publication year - 2018
Publication title -
oncology research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.267
H-Index - 57
eISSN - 1555-3906
pISSN - 0965-0407
DOI - 10.3727/096504018x15152056890500
Subject(s) - microrna , apoptosis , gene knockdown , cell cycle , cell growth , hela , biology , flow cytometry , cancer research , cell cycle checkpoint , western blot , gene silencing , reporter gene , microbiology and biotechnology , cell , gene expression , gene , biochemistry
HIF-2α knockdown inhibits proliferation, arrests the cell cycle, and promotes apoptosis and autophagy under hypoxic conditions in cervical cancer. However, the upstream regulatory mechanism of HIF-2α expression is unclear. MicroRNAs (miRNAs) degrade target mRNAs by binding to the 3'-untranslated region of mRNAs. In this study, we investigated the role of miRNAs in the regulation of HIF-2α expression in cervical cancer under hypoxic conditions. miRNAs regulating HIF-2α expression were predicted using TargetScan and miRanda and were determined in cervical cancer under hypoxic conditions by qRT-PCR. Additionally, the targeted regulation of HIF-2α by miR-519d-3p was evaluated by Western blot and luciferase reporter assays. Effects of miR-519d-3p and HIF-2α on cell proliferation, cell cycle, and apoptosis were analyzed by CCK-8 and flow cytometry assays, respectively. miR-106a-5p, miR-17-5p, miR-519d-3p, miR-526b-3p, and miR-20b-5p are potentially regulatory miRNAs that bound to the HIF-2α 3'-untranslated region as per TargetScan and miRanda predictions. Expression of the five miRNAs was inhibited in HeLa cells under hypoxic conditions compared to normoxic conditions, and the expression of miR-519d-3p was lower than that of other miRNAs. Luciferase reporter assays showed that HIF-2α was a target of miR-519d-3p. Additionally, miR-519d-3p overexpression inhibited cell proliferation, arrested the cell cycle transition from the G1 stage to the S stage, and promoted cell apoptosis under hypoxic conditions in cervical cancer. HIF-2α overexpression partially reversed the effect of miR-519d-3p. In conclusion, miR-519d-3p overexpression suppressed proliferation, inhibited the cell cycle, and promoted apoptosis of HeLa cells by targeting HIF-2α under hypoxic conditions.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here