
miR-1290 Contributes to Colorectal Cancer Cell Proliferation by Targeting INPP4B
Author(s) -
Qiang Ma,
Yan Wang,
Hualing Zhang,
Fengqiang Wang
Publication year - 2018
Publication title -
oncology research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.267
H-Index - 57
eISSN - 1555-3906
pISSN - 0965-0407
DOI - 10.3727/096504017x15051741798389
Subject(s) - gene knockdown , cell growth , cyclin d1 , cancer research , microrna , downregulation and upregulation , biology , luciferase , cell , microbiology and biotechnology , transfection , cell cycle , cell culture , gene , biochemistry , genetics
Colorectal cancer (CRC) is one of the most common oncological conditions worldwide, to date. MicroRNA-1290 (miR-1290) has been demonstrated to regulate its progression. We studied the role of miR-1290 in CRC progression. The gene was upregulated in CRC tissues and cells. Its overexpression promoted CRC cell proliferation analyzed by MTT assay, colony formation assay, and soft agar growth assay. In addition, miR-1290 knockdown inhibited CRC cell proliferation. We also found that miR-1290 overexpression reduced the p27 level and increased cyclin D1 at both the mRNA and protein levels, whereas miR-1290 knockdown increased p27 and reduced cyclin D1, confirming miR-1290 promoted CRC cell proliferation. Inositol polyphosphate 4-phosphatase B (INPP4B) was the target of miR-1290. Luciferase reporter assay revealed that miR-1290 directly bound to the 3′-UTR of INPP4B; the mutated seed sites in miR-1290 abrogated this effect. Double knockdown of INPP4B and miR-1290 promoted CRC cell proliferation, suggesting miR-1290 promoted CRC cell proliferation by targeting INPP4B.