
MicroRNA-152 Suppresses Human Osteosarcoma Cell Proliferation and Invasion by Targeting E2F Transcription Factor 3
Author(s) -
Chao Ma,
Jinfeng Han,
Dong Dong,
Nanya Wang
Publication year - 2018
Publication title -
oncology research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.267
H-Index - 57
eISSN - 1555-3906
pISSN - 0965-0407
DOI - 10.3727/096504017x15021536183535
Subject(s) - osteosarcoma , microrna , transcription factor , e2f , cancer research , cell growth , biology , medicine , microbiology and biotechnology , gene , genetics
MicroRNA-152 (miR-152) expression has been reported to be downregulated in osteosarcoma (OS). However, the role of miR-152 in OS is not well documented. In the present study, we aimed to explore the function and underlying mechanism of miR-152 in OS. We found that miR-152 was underexpressed in OS tissues and cell lines. Decreased miR-152 was inversely correlated with lymph node metastasis and advanced clinical stage. Overexpression of miR-152 significantly inhibited cell proliferation, colony formation, migration, and invasion of OS cells. Bioinformatics analyses showed that miR-152 directly targeted E2F transcription factor 3 (E2F3), as further confirmed by a dual-luciferase reporter assay. E2F3 expression was upregulated and inversely correlated with miR-152 expression level in human OS tissues. Moreover, the inhibitory effects of miR-152 on OS growth and invasion were attenuated by E2F3 overexpression. Taken together, our findings indicated that miR-152 reduced OS growth and invasion by targeting E2F3 and provided new evidence of miR-152 as a potential therapeutic target for OS.