z-logo
open-access-imgOpen Access
Overexpression of MicroRNA-216a Suppresses Proliferation, Migration, and Invasion of Glioma Cells by Targeting Leucine-Rich Repeat-Containing G Protein-Coupled Receptor 5
Author(s) -
Junfeng Zhang,
Kun Xu,
Lili Shi,
Li Zhang,
Zhaohua Zhao,
Hao Xu,
Fei Liang,
Hongbo Li,
Yan Zhao,
Xi Xu,
Yingfang Tian
Publication year - 2017
Publication title -
oncology research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.267
H-Index - 57
eISSN - 1555-3906
pISSN - 0965-0407
DOI - 10.3727/096504017x14874323871217
Subject(s) - glioma , microrna , cancer research , lgr5 , oncogene , wnt signaling pathway , biology , downregulation and upregulation , cell growth , western blot , signal transduction , cell cycle , cell , microbiology and biotechnology , gene , biochemistry
Increasing studies have suggested that microRNAs (miRNAs) are involved in the development of gliomas. MicroRNA-216a has been reported to be a tumor-associated miRNA in many types of cancer, either as an oncogene or as a tumor suppressor. However, little is known about the function of miR-216a in gliomas. The present study was designed to explore the potential role of miR-216a in gliomas. We found that miR-216a was significantly decreased in glioma tissues and cell lines. Overexpression of miR-216a significantly suppressed the proliferation, migration, and invasion of glioma cells. Leucine-rich repeat-containing G protein-coupled receptor 5 (LGR5) was identified as a target gene of miR-216a in glioma cells by bioinformatics analysis, dual-luciferase reporter assay, real-time quantitative polymerase chain reaction, and Western blot analysis. Moreover, miR-216a overexpression inhibited the Wnt/β-catenin signaling pathway. The restoration of LGR5 expression markedly reversed the antitumor effect of miR-216a in glioma cells. Taken together, these findings suggest a tumor suppressor role for miR-216a in gliomas, which inhibits glioma cell proliferation, migration, and invasion by targeting LGR5. Our study suggests that miR-216a may serve as a potential therapeutic target for future glioma treatment.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here