Open Access
MicroRNA-133a Inhibits Proliferation of Gastric Cancer Cells by Downregulating ERBB2 Expression
Author(s) -
Chang Li,
Xiaoping Li,
Shengxiang Gao,
Chang Li,
Lei Ma
Publication year - 2017
Publication title -
oncology research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.267
H-Index - 57
eISSN - 1555-3906
pISSN - 0965-0407
DOI - 10.3727/096504017x14847395834985
Subject(s) - apoptosis , gene silencing , protein kinase b , cancer , cancer cell , cell growth , cancer research , microrna , flow cytometry , mtt assay , biology , microbiology and biotechnology , biochemistry , genetics , gene
Gastric cancer is the fourth most common type of cancer and the second highest leading cause of cancer-related deaths worldwide. It has already been established that miR-133a is involved in gastric cancer. In this study, we investigated the molecular mechanisms by which miR-133a inhibits the proliferation of gastric cancer cells. We analyzed the proliferative capacity of human gastric cancer cells SNU-1 using an MTT assay. Cell apoptosis was determined using flow cytometry. The expression levels of ERBB2, p-ERK1/2, and p-AKT in SNU-1 cells were determined using Western blot analysis. To confirm that ERBB2 is a direct target of miR-133a, a luciferase reporter assay was performed. Results showed that miR-133a overexpression inhibited SNU-1 cell proliferation and increased apoptosis. ERBB2 was a direct target of miR-133a, and it was negatively regulated by miR-133a. Interestingly, ERBB2 silencing has a similar impact to miR-133a overexpression, in that it significantly induced apoptosis and inhibited ERK and AKT activation. Our study showed that miR-133a inhibits the proliferation of gastric cancer cells by downregulating the expression of ERBB2 and its downstream signaling molecules p-ERK1/2 and p-AKT. Therefore, miR-133a might be used as a therapeutic target for treating gastric cancer.