
miR-5195-3p Inhibits Proliferation and Invasion of Human Bladder Cancer Cells by Directly Targeting Oncogene KLF5
Author(s) -
Zhangjie Jiang,
Yida Zhang,
Runfu Cao,
Li Li,
Kezhao Zhong,
Qingsheng Chen,
Jie Xiao
Publication year - 2017
Publication title -
oncology research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.267
H-Index - 57
eISSN - 1555-3906
pISSN - 0965-0407
DOI - 10.3727/096504016x14831120463349
Subject(s) - bladder cancer , oncogene , cancer research , biology , microrna , carcinogenesis , cell growth , cancer , cyclin d1 , cell cycle , transfection , antagomir , medicine , endocrinology , cell culture , gene , genetics
miRNAs play a key role in the carcinogenesis of many cancers, including bladder cancer. In the current study, the role of miR-5195-3p, a quite recently discovered and poorly studied miRNA, in the proliferation and invasion of human bladder cancer cells was investigated. Our data displayed that, compared with healthy volunteers (control) and SU-HUC-1 normal human bladder epithelial cells, miR-5195-3p was sharply downregulated in bladder cancer patients and five human bladder cancer cell lines. The oligo miR-5195-3p mimic or miR-5195-3p antagomir was subsequently transfected into both T24 and BIU-87 bladder cancer cell lines. The miR-5195-3p mimic robustly increased the miR-5195-3p expression level and distinctly reduced the proliferation and invasion of T24 and BIU-87 cells. In contrast, the miR-5195-3p antagomir had an opposite effect on miR-5195-3p expression, cell proliferation, and invasion. Our data from bioinformatic and luciferase reporter gene assays identified that miR-5195-3p targeted the mRNA 3'-UTR of Krüppel-like factor 5 (KLF5), which is a proven proto-oncogene in bladder cancer. miR-5195-3p sharply reduced KLF5 expression and suppressed the expression or activation of its several downstream genes that are kinases improving cell survival or promoting cell cycle regulators, including ERK1/2, VEGFA, and cyclin D1. In conclusion, miR-5195-3p suppressed proliferation and invasion of human bladder cancer cells via suppression of KLF5.