z-logo
open-access-imgOpen Access
Regulation of MET Kinase Inhibitor Resistance by Copy Number of MET in Gastric Carcinoma Cells
Author(s) -
Yohei Funakoshi,
Toru Mukohara,
Roudy Chiminch Ekyalongo,
Hideo Tomioka,
Yu Kataoka,
Yohei Shimono,
Naoko Chayahara,
Masanori Toyoda,
Naomi Kiyota,
Yutaka Fujiwara,
Hironobu Minami
Publication year - 2014
Publication title -
oncology research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.267
H-Index - 57
eISSN - 1555-3906
pISSN - 0965-0407
DOI - 10.3727/096504014x13946388748956
Subject(s) - gastric carcinoma , kinase , cancer research , medicine , biology , cancer , genetics
We previously established acquired resistant models for MET-tyrosine kinase inhibitors (TKIs) by continuously exposing the MET -amplified gastric cancer cell line MKN45 to MET-TKIs, PHA665752 (MKN45-PR), or GSK1363089 (MKN45-GR). We found resistant mechanisms caused by increased copy number of MET in both lines and Y1230H mutation in MKN45-PR. We also found that excessive MET signaling caused by these MET alterations resulted in intra-S-phase arrest in the absence of MET-TKIs, so that cells grew faster in the presence of MET-TKIs, a phenomenon referred to as “addiction.” In this study, to investigate reversibility of the acquired resistance and “addiction” to MET-TKIs and their causative MET alterations, we sequentially cultured MKN45-PR and MKN45-GR in decreasing concentrations of MET-TKIs until they were able to grow in a drug-free condition. These “revertant” cell lines (designated MKN45-PR-RE and MKN45-GR-RE) were comparatively analyzed. Growth assay showed that both MKN45-PR-RE and MKN45-GR-RE partially lost the property of “addiction” to MET-TKIs. MKN45-GR-RE lost the property of resistance to GSK1363089, but MKN45-PR-RE retained resistance to PHA665752. Copy numbers and expression and phosphorylation of MET protein reduced in both MKN45-PR-RE and MKN45-GR-RE compared with MKN45-PR and MKN45-GR, respectively, but Y1230H mutation and biochemical resistance to PHA665752 remained in MKN45-PR-RE. The “addiction” to MET-TKIs appeared attributable to increased copy number, and the property and the MET alteration were reversible. The Y1230H mutation appeared enough in itself to keep cells resistant to MET-TKIs and was irreversible.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here