
Preparation of organic-inorganic hybrid boronate affinity monolith via thiol-ene click reaction for specific capture of glycoproteins
Author(s) -
杨帆,
毛劼,
何锡文,
陈朗星,
张玉奎
Publication year - 2013
Publication title -
sepu/chinese journal of chromatography
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.171
H-Index - 19
eISSN - 1872-2059
pISSN - 1000-8713
DOI - 10.3724/sp.j.1123.2013.04023
Subject(s) - monolith , click chemistry , chemistry , ethylene glycol , ene reaction , horseradish peroxidase , covalent bond , chemical engineering , chromatography , polymer chemistry , organic chemistry , catalysis , engineering , enzyme
A novel strategy for the preparation of the organic-inorganic hybrid boronate affinity monolith was developed via the "thiol-ene" click reaction. A thiol group-modified silica monolith was first synthesized via the sol-gel process by the in situ co-condensation with tetramethoxysilane (TMOS) and 3-mercaptopropyltrimethoxysilane (MPTMS) as precursors. Then 3-acrylamidophenylboronic acid (AAPBA) was covalently immobilized on the hybrid monolith via the "thiol-ene" click reaction to form AAPBA-silica hybrid affinity monolith. The reaction conditions for the preparation of AAPBA-silica hybrid affinity monolith were optimized, including the ratio of TMOS to MPTMS, the contents of poly(ethylene glycol) (PEG) and methanol. The morphology and mechanical stability of the boronate affinity monolith were characterized and evaluated by scanning electron microscopy and Fourier-transform infrared spectroscopy. The obtained boronate affinity hybrid monolith exhibited excellent specificity toward the nucleosides containing cis-diols under neutral conditions. It was further applied to the specific capture of the glycoproteins ovalbumin and horseradish peroxidase. The method is novel and reliable, which has a great potential for the preparation of different kinds of the boronate affinity monoliths.