On the Smallest Non-Trivial Tight Sets in Hermitian Polar Spaces
Author(s) -
Jan De Beule,
Klaus Metsch
Publication year - 2017
Publication title -
the electronic journal of combinatorics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.703
H-Index - 52
eISSN - 1097-1440
pISSN - 1077-8926
DOI - 10.37236/6461
Subject(s) - disjoint sets , mathematics , hermitian matrix , combinatorics , polar , space (punctuation) , upper and lower bounds , hypergraph , disjoint union (topology) , discrete mathematics , physics , pure mathematics , mathematical analysis , quantum mechanics , computer science , operating system
We show that an $x$-tight set of the Hermitian polar spaces $\mathrm{H}(4,q^2)$ and $\mathrm{H}(6,q^2)$ respectively, is the union of $x$ disjoint generators of the polar space provided that $x$ is small compared to $q$. For $\mathrm{H}(4,q^2)$ we need the bound $x<q+1$ and we can show that this bound is sharp.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom