
Bending of a ship's skin panel loaded along the axis of symmetry
Author(s) -
Tatiana Knysh,
М. В. Сухотерин,
С.О. Барышников
Publication year - 2021
Publication title -
morskie intellektualʹnye tehnologii
Language(s) - English
Resource type - Journals
eISSN - 2588-0233
pISSN - 2073-7173
DOI - 10.37220/mit.2021.54.4.102
Subject(s) - fourier series , series (stratigraphy) , exact solutions in general relativity , symmetry (geometry) , mathematical analysis , mathematics , bending , superposition principle , boundary value problem , quotient , bending moment , boundary (topology) , geometry , trigonometric functions , transverse plane , structural engineering , engineering , paleontology , biology , pure mathematics
Задача изгиба прямоугольной панели обшивки от действия распределенной по оси симметрии поперечной нагрузки не имеет точного решения в конечном виде в виду сложности краевых условий и вида нагрузки. Использование другими авторами различных приближенных методов оставляет открытым вопрос о точности полученных результатов. Целью исследования является получение точного решения с помощью гиперболо-тригонометрических рядов по двум координатам. Для этого используется метод бесконечной суперпозиции указанных рядов, которые в отдельности удовлетворят лишь части граничных условий. Порождаемые ими невязки взаимно компенсируются в ходе итерационного процесса и стремятся к нулю. Частное решения представлено двойным рядом Фурье. Точное решение достигается увеличением количества членов в рядах и числа итераций. При достижении заданной точности процесс прекращается. Получены численные результаты для прогибов и изгибающих моментов для квадратной пластины при различной длине загруженной части оси пластины. Представлены 3D-формы изогнутой поверхности пластины и эпюры изгибающих моментов. The problem of bending a rectangular skin panel from the action of a transverse load distributed along the axis of symmetry does not have an exact solution in the final form due to the complexity of the boundary conditions and the type of load. The use of various approximate methods by other authors leaves open the question of the accuracy of the results obtained. The aim of the study is to obtain an exact solution using hyperbolo-trigonometric series in two coordinates. To do this, we use the method of infinite superposition of these series, which individually satisfy only part of the boundary conditions. The residuals generated by them are mutually compensated during the iterative process and tend to zero. The quotient of the solution is represented by a double Fourier series. The exact solution is achieved by increasing the number of terms in the series and the number of iterations. When the specified accuracy is reached, the process stops. Numerical results are obtained for deflections and bending moments for a square plate with different lengths of the loaded part of the plate axis. 3D shapes of the curved surface of the plate and diagrams of bending moments are presented.