
Finite element simulation of marine generators
Author(s) -
A. V. Grinek,
А.М. Фищенко,
И.П. Бойчук,
Д.Н. Перелыгин,
N. V. Savosteenko
Publication year - 2020
Publication title -
morskie intellektualʹnye tehnologii
Language(s) - English
Resource type - Journals
eISSN - 2588-0233
pISSN - 2073-7173
DOI - 10.37220/mit.2020.50.4.103
Subject(s) - flux linkage , transient (computer programming) , eccentricity (behavior) , amplitude , finite element method , rotor (electric) , wavelet , harmonic , voltage , waveform , vibration , computer simulation , wavelet transform , power (physics) , series (stratigraphy) , physics , acoustics , mechanics , engineering , computer science , structural engineering , geology , optics , paleontology , direct torque control , quantum mechanics , artificial intelligence , political science , induction motor , law , operating system
В статье рассмотрено численное моделирование синхронного генератора. Описана последовательность создания геометрической модели. Представлены результаты численного моделирования статической и динамической задачи. Получены временные осциллограммы потокосцепления, фазных токов и напряжений, сил и моментов. На их основании получены частотные характеристики заданного генератора на холостых режимах. С помощью вейвлет-преобразования проведен анализ переходного процесса. Исследование показало, что существует три частотные области: область нарастания скорости, достижение критической скорости и выход на установившийся режим. Анализ коэффициентов вейвлет-преобразования исследуемого сигнала дал информацию об энергии, содержащейся в соответствующих частотных составляющих ряда. Данная численная модель дает возможность идентифицировать спектры напряжений, токов, сил и моментов, соответствующих механическим и электромагнитным дефектам. Показана возможность диагностирования дефектов генератора, обусловленного эксцентриситетом ротора, с помощью модельного исследования на пусковых режимах. Наличие эксцентриситета ротора приводит к появлению гармонической составляющей в спектре силы большой амплитуды с максимальным значением на низкой частоте. The sequence of creating a geometric model is described. The results of numerical simulation of static and dynamic problems are presented. Time oscillograms of flux linkage, phase currents and voltages, forces and moments were obtained. The analysis of the transient process is carried out using the wavelet transform. The study showed that there are three frequency ranges: the area of increasing speed, reaching critical speed and reaching steady state. Analysis of the wavelet transform coefficients gave information about the energy, which is contained in the corresponding frequency components of the series. This numerical model makes it possible to identify the spectrum of voltages, currents, forces and moments corresponding to mechanical and electromagnetic defects. The possibility of diagnosing the eccentricity of the rotor using a model study in starting modes is shown. Eccentricity leads to the appearance of a harmonic component in the power spectrum with a large amplitude with a maximum value at a low frequency.