
"Upper bounds of Toeplitz determinants for a subclass of alpha-close-to-convex functions"
Author(s) -
ANAND KUMAR JHA,
PRAVATI SAHOO
Publication year - 2022
Publication title -
creative mathematics and informatics
Language(s) - English
Resource type - Journals
eISSN - 1843-441X
pISSN - 1584-286X
DOI - 10.37193/cmi.2022.01.08
Subject(s) - toeplitz matrix , mathematics , subclass , combinatorics , class (philosophy) , regular polygon , function (biology) , convex function , upper and lower bounds , discrete mathematics , pure mathematics , mathematical analysis , computer science , geometry , artificial intelligence , evolutionary biology , antibody , immunology , biology
"Let A be the class of P analytic functions in the unit disc U which are of the form $f(z)=z+\sum_{n=2}^{\infty}a_nz^n$. For 0 ≤ α 0$. We consider the Toeplitz matrices whose elements are the coefficients an of the function f in the class C_α. In this paper we obtain upper bounds for the Toeplitz determinants. "