z-logo
open-access-imgOpen Access
On extensions of pseudo-valuations on BCK algebras
Author(s) -
DUMITRU BUSNEAG,
DANA PICIU,
MIHAELA ISTRATA
Publication year - 2022
Publication title -
creative mathematics and informatics
Language(s) - English
Resource type - Journals
eISSN - 1843-441X
pISSN - 1584-286X
DOI - 10.37193/cmi.2022.01.04
Subject(s) - valuation (finance) , mathematics , uniform continuity , discrete mathematics , combinatorics , metric space , finance , economics
"In this paper we define a pseudo-valuation on a BCK algebra (A,→, 1) as a real-valued function v : A → R satisfying v(1) = 0 and v(x → y) ≥ v(y) − v(x), for every x, y ∈ A ; v is called a valuation if x = 1 whenever v(x) = 0. We prove that every pseudo-valuation (valuation) v induces a pseudo-metric (metric) on A defined by dv(x, y) = v(x → y) + v(y → x) for every x, y ∈ A, where → is uniformly continuous in both variables. The aim of this paper is to provide several theorems on extensions of pseudo-valuations (valuations) on BCK algebras. In this paper we define a pseudo-valuation on a BCK algebra (A,→, 1) as a real-valued function v : A → R satisfying v(1) = 0 and v(x → y) ≥ v(y) − v(x), for every x, y ∈ A ; v is called a valuation if x = 1 whenever v(x) = 0. We prove that every pseudo-valuation (valuation) v induces a pseudo-metric (metric) on A defined by dv(x, y) = v(x → y) + v(y → x) for every x, y ∈ A, where → is uniformly continuous in both variables. The aim of this paper is to provide several theorems on extensions of pseudo-valuations (valuations) on BCK algebras. In this paper we define a pseudo-valuation on a BCK algebra (A,→, 1) as a real-valued function v : A → R satisfying v(1) = 0 and v(x → y) ≥ v(y) − v(x), for every x, y ∈ A ; v is called a valuation if x = 1 whenever v(x) = 0. We prove that every pseudo-valuation (valuation) v induces a pseudo-metric (metric) on A defined by dv(x, y) = v(x → y) + v(y → x) for every x, y ∈ A, where → is uniformly continuous in both variables. The aim of this paper is to provide several theorems on extensions of pseudo-valuations (valuations) on BCK algebras."

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here