
Method for assessing the dynamics and efficiency of diving fins
Author(s) -
Andrzej Grządziela,
Piotr Szymak,
Paweł Piskur
Publication year - 2020
Publication title -
acta of bioengineering and biomechanics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.361
H-Index - 25
eISSN - 2450-6303
pISSN - 1509-409X
DOI - 10.37190/abb-01589-2020-06
Subject(s) - fin , thrust , mechanical engineering , process (computing) , flow (mathematics) , strain gauge , engineering , marine engineering , simulation , computer science , structural engineering , mechanics , physics , operating system
This article presents a method for an evaluation of the dynamic ability and efficiency of diving fins. There is paucity in the literature on the process of selecting optimal fins. As a result, there are efforts made to develop a methodology for selecting fins that meet the proposed criteria. In the present study, an analysis on the two types of fins most popular within the commercial market was conducted. The experiment took place in a test water tunnel fully equipped with a measuring system and strain gauges for recording forced interaction between the moving fin and flowing water. The tested fins rested on an artificial leg, which moved respectively, thereby developing movement algorithms. This forced fluid flow was implemented by a pump that was able to control the fluids velocity, and a non-invasive method involving an ultrasonic flow meter was used to measure the fluids velocity. Finally, the fin efficiency was calculated as the ratio of multiplication of generated thrust to electrical energy consumption whilst also considering the mechanical efficiency of the leg manipulator. The results of these experiments are discussed in depth and a method is created for the subsequent stage in which a new type of fins called biomimetic is to be analyzed and compared.