z-logo
open-access-imgOpen Access
Prediction of tungsten insert gas welding process parameter using design of experiment and fuzzy logic
Author(s) -
P. Pondi,
Joseph I. Achebo,
A. Ozigagun
Publication year - 2021
Publication title -
journal of advances in sciences and engineering
Language(s) - English
Resource type - Journals
ISSN - 2636-607X
DOI - 10.37121/jase.v4i2.149
Subject(s) - welding , materials science , inert gas , tungsten , gas tungsten arc welding , heat affected zone , central composite design , bevel , metallurgy , composite material , mechanical engineering , response surface methodology , arc welding , mathematics , engineering , statistics
The focus of this study is to predict tungsten inert gas (TIG) welding process parameter such as heat input for stabilizing heat and removing post weld crack formation in mild steel weldment. The main input parameters examined are the welding current, voltage and speed whereas the measured (response) parameter is heat input. Statistical design of experiment was done by means of central composite design method using the range and levels of independent variables. The experiment was carried out 20 times (with 5 specimens per run) using 60 mm x 40 mm x 10 mm mild steel coupons. The plate samples were cut longitudinally with a Single-V joint preparation, with the edges beveled. The welding process utilizes 100% pure argon as a protecting gas to shield the weld specimen from external interaction. The interaction between the input and response variables was analyzed using a fuzzy logic system. The result showed that for a welding current, voltage and speed of 190 A, 21 V, and 2.0 mm/s respectively, the predicted heat input was 0.912 kJ/mm whereas for input parameters of (170 A, 25 V, and 2.0 mm/s) and (180 A, 23 V, 0.98 mm/s), the predicted heat inputs were 1.07 kJ/mm and 1.380 kJ/mm, respectively.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here