z-logo
open-access-imgOpen Access
Power Loss Determination, Assessment and Enhancement of the Nigerian Power System Network
Author(s) -
A.E Airoboman,
T. M. Tyo
Publication year - 2018
Publication title -
journal of advances in sciences and engineering
Language(s) - English
Resource type - Journals
ISSN - 2636-607X
DOI - 10.37121/jase.v1i2.22
Subject(s) - electric power system , computer science , slack bus , transformer , transmission line , voltage , transient (computer programming) , power flow , power flow study , reliability engineering , automotive engineering , power (physics) , engineering , ac power , electrical engineering , telecommunications , physics , quantum mechanics , operating system
For sustainability to be recorded in the Nigeria power sector (NPS), there must be a well-integrated system that is not easily prone to failure and is readily available when called into action. The NPS has overtime suffered from degraded infrastructure, policy paralysis to mention but few. However, if the needful is done with respect to identifying weak links in the network and a corresponding fast action in clearing failures along the line(s) then, some remarkable achievements could be recorded. This paper, therefore, carried out power flow analysis using the Newton Raphson Algorithm on the Electrical Transient Analyser Program (ETAP) version 12.6 on the NPS network using Maryland transmission station (MTS), Lagos, Nigeria as a case study. The choice of the location was as a result of the sensitivity of Lagos State in the economic activities of Nigeria. Results from the load flow indicated several voltage violations at load1 bus, load3 bus and load5 bus with magnitudes of 94.51, 94.91 and 94.79 % respectively. Consequently, transformers designated as T2A and T3A were said to have the highest and lowest branch losses of 150.0kW and 18.2kW respectively.  Compensation of the losses along the line was carried out using optimal capacitor placement (OCP) subjected to constraints on the ETAP environment. The results from the OCP showed that it optimally sized and placed four capacitor banks on four of the candidate buses, which include load1 bus, load2 bus, load3 bus and load5 bus. An improvement of 2.26%, 1.12%, 1.93%, 1.12% and 2.006% were recorded for load1 bus, load2 bus, load3 bus, load4 bus and load5 bus respectively.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here