The redistribution of temperature-induced interface friction in friction-type high-strength bolted joint after bolt fracture
Author(s) -
Gaoxin Wang,
Youliang Ding
Publication year - 2020
Publication title -
journal of engineering research
Language(s) - English
Resource type - Journals
eISSN - 2307-1885
pISSN - 2307-1877
DOI - 10.36909/jer.v8i1.6500
Subject(s) - redistribution (election) , finite element method , bolted joint , materials science , joint (building) , structural engineering , composite material , engineering , law , political science , politics
For the friction-type high-strength bolted joint, the bolt fracture can cause redistribution of interface friction, which will seriously endanger the connection safety of structural members. However, current study scarcely focuses on the redistribution of interface friction after bolt fracture. Therefore, this paper will specifically carry out finite element analysis on the redistribution of interface friction caused by fractured bolts. Firstly, the refined finite element model of friction-type high-strength bolted joint is used to investigate the variation of interface friction with uniform temperature and the distribution of interface friction in different areas. Furthermore, stochastic finite element method is introduced to explain how the quantity and location of fractured bolts influence the redistribution of interface friction. Finally, the mathematical model of friction redistribution is built to describe the redistribution of temperature-induced interface friction in the friction-type high-strength bolted joint after bolt fracture. After validation, the mathematical model can well describe the redistribution of interface friction caused by fractured bolts.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom