z-logo
open-access-imgOpen Access
The experimental investigation of diesel fuel-biofuel blends at different injection pressures in a DI diesel engine
Author(s) -
İlker Örs,
Murat Ciniviz,
Bahar Sayın Kul,
Ali Kahraman
Publication year - 2021
Publication title -
journal of engineering research
Language(s) - English
Resource type - Journals
eISSN - 2307-1885
pISSN - 2307-1877
DOI - 10.36909/jer.9409
Subject(s) - diesel fuel , diesel engine , brake specific fuel consumption , thermal efficiency , automotive engineering , nox , mean effective pressure , combustion , environmental science , exhaust gas recirculation , biodiesel , smoke , fuel efficiency , thrust specific fuel consumption , diesel cycle , waste management , ignition system , winter diesel fuel , internal combustion engine , compression ratio , engineering , chemistry , biochemistry , organic chemistry , aerospace engineering , catalysis
In this study, it was aimed to investigate the effects of a diesel-biodiesel blend (B20) and a diesel-biodiesel-bioethanol blend (BE5) on combustion parameters in addition to engine performance and exhaust emissions compared with diesel fuel. Parameters included in the evaluation was brake specific fuel consumption, brake thermal efficiency, CO, CO2, HC, NOx, smoke opacity emissions and finally cylinder pressure, heat release rate, ignition delay, some key points of the combustion phases such as start of ignition, start of combustion, CA50 and CA90 and combustion duration. Engine tests were conducted at different injection pressures of 170 bar, 190 bar, which is the original injection pressure, and 220 bar by the engine being loaded by 25, 50, 75 and 100% for the assessment of engine performance and exhaust emissions. For combustion evaluation, the data obtained at 1400 rpm, maximum torque-speed, and 2800 rpm, maximum power-speed were used, while the injection pressures were set to 170, 190 and 220 bar under full load condition. According to test results, the better performance characteristics, exhaust emissions and combustion behaviour of engine were obtained with the use of BE5 at high injection pressure. So, BE5 fuel improved brake specific fuel consumption by about 7% and brake thermal efficiency by about 6% compared to B20. In addition, while the emission values of BE5 gave better results than diesel fuel, it reduced the NOx and smoke emissions of B20 by approximately 1.4% and 6.4% respectively. Moreover, it has achieved a reduction in smoke emission of up to 45% compared to diesel fuel.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom