z-logo
open-access-imgOpen Access
Optimizing CNTFET design parameters using Taguchi method for high performance and low power applications
Author(s) -
Muhammad Hadi,
Hanim Hussin,
N. Soin
Publication year - 2022
Publication title -
maǧallaẗ al-abḥāṯ al-handasiyyaẗ
Language(s) - English
Resource type - Journals
eISSN - 2307-1885
pISSN - 2307-1877
DOI - 10.36909/jer.14155
Subject(s) - taguchi methods , carbon nanotube field effect transistor , orthogonal array , carbon nanotube , power (physics) , materials science , transistor , field effect transistor , electronic engineering , computer science , nanotechnology , electrical engineering , engineering , voltage , composite material , physics , quantum mechanics
The features of CNT (Nanotube Carbon) are fascinating to study due to their unique structural and electrical capabilities. The small structure of the CNT in Field-Effect Transistor technology can produce a smaller device with a better performance. In this work, the Taguchi method had been implemented to optimize the Carbon Nanotube Field-Effect Transistor (CNTFET). The Minitab 19 software had been used to carry out the Taguchi method analysis. Three design parameters (diameter of CNT, pitch and the number of CNT) with three different sizes each had been chosen to improve the CNTFET capabilities. L27 orthogonal array and signal-to-noise (SNR) was used to collect and analyze the data. The result from the Taguchi method was validated by using ANOVA. The analysis results displayed the best combination of the three design parameters that produce the optimum performance in terms of high power and low power application. The study showed that the most dominant design parameter that affects the CNTFET’s current characteristics is the diameter of CNT with 59.93%, 96.15% and 99.14% towards on-current (Ion), off-current (Ioff) and current ratio (Ion/Ioff), respectively. By identifying the most dominant structure in CNTFET, the device can be further optimized. Eventually, the CNTFET devices in terms of high power and low power application can be enhanced.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here