z-logo
open-access-imgOpen Access
Homotopy perturbation and numerical solutions for MHD flow of PTT fluid through a channel embedded in a porous medium
Author(s) -
Swain B.K,
Das M,
Dash G.C
Publication year - 2021
Publication title -
journal of engineering research
Language(s) - English
Resource type - Journals
eISSN - 2307-1885
pISSN - 2307-1877
DOI - 10.36909/jer.12069
Subject(s) - mechanics , homotopy analysis method , porous medium , heat transfer , compressibility , newtonian fluid , magnetohydrodynamics , partial differential equation , classical mechanics , physics , thermodynamics , materials science , magnetic field , mathematics , porosity , mathematical analysis , nonlinear system , quantum mechanics , composite material
An analysis is made of the steady one dimensional flow and heat transfer of an incompressible viscoelastic electrically conducting fluid (PTT model) in a channel embedded in a saturated porous medium. The pressure driven flow is subjected to a transverse magnetic field of constant magnetic induction (field strength). The heat transfer accounts for the viscous dissipation. The governing equation (a non-linear ordinary differential equation) is solved analytically (Homotopy Perturbation Method) and numerically (Runge-Kutta method with shooting technique) providing the consistency of the result. The role of Deborah number substantiates both Newtonian and non-Newtonian aspects of the flow model. The inclusion of two body forces affects rheological property of the flow model considered. Temperature distribution in the boundary layer is shown when the channel surfaces are held at constant temperatures. A novel result of the analysis is that the contribution of viscous dissipation is found to be negligible as the variation of temperature is almost linear across the flow field in the present PTT fluid model indicating preservation of thermal energy loss.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom