Open Access
Catalytic Effectiveness of Synchrotron and Synchrocyclotron Radiations on Osmium Dioxide (OsO2) and Osmium Tetroxide (OsO4) Nano Capsules Delivery in DNA/RNA of Cancer Cells
Author(s) -
Alireza Heidari,
Margaret Hotz,
Nancy MacDonald,
Victoria Peterson,
Angela Caissutti,
Elizabeth Besana,
Jennifer Esposito,
Katrina Schmitt,
Ling-Yu Chan,
Francesca Sherwood,
Maria Henderson,
Jimmy Kimmel
Publication year - 2021
Language(s) - English
DOI - 10.36811/ijho.2021.110014
Subject(s) - osmium tetroxide , osmium , synchrotron , chemistry , dna , catalysis , optics , biochemistry , physics , electron microscope , ruthenium
In the current research, catalytic effectiveness of synchrotron and synchrocyclotron radiations on Osmium Dioxide (OsO2) and Osmium Tetroxide (OsO4) nano capsules delivery in DNA/RNA of cancer cells is investigated. The calculation of thickness and optical constants of Osmium Dioxide (OsO2) and Osmium Tetroxide (OsO4) catalytic effectiveness of synchrotron and synchrocyclotron radiations on Osmium Dioxide (OsO2) and Osmium Tetroxide (OsO4) nano capsules delivery in DNA/RNA of cancer cells produced using sol-gel method over glassy medium through a single reflection spectrum is presented. To obtain an appropriate fit for reflection spectrum, the classic Drudge-Lorentz model for parametric di–electric function is used. The best fitting parameters are determined to simulate the reflection spectrum using Levenberg-Marquardt optimization method. The simulated reflectivity from the derived optical constants and thickness are in good agreement with experimental results.Keywords: Catalytic Effectiveness; Synchrotron and Synchrocyclotron Radiations; Osmium Dioxide (OsO2) and Osmium Tetroxide (OsO4) Nano Capsules; Delivery; DNA/RNA; Cancer Cells