
Prediksi penyakit ginjal kronis menggunakan metode pengurangan fitur Symetrical Uncertainty
Author(s) -
Muhammad Kurniawan
Publication year - 2020
Publication title -
jnanaloka
Language(s) - English
Resource type - Journals
eISSN - 2722-7332
pISSN - 2722-2896
DOI - 10.36802/jnanaloka.2020.v1-no1-1
Subject(s) - biology , forestry , zoology , geography
Data mining berhubungan dengan pencarian data untuk menemukan pola atau pengetahuan da- ri data keseluruhan. Data mining dapat digunakan untuk memprediksi suatu keadaan, seperti apakah seseorang terkena penyakit ginjal kronis atau tidak. Dalam penelitian ini metode pengu- rangan fitur symmetrical uncertainty dengan algoritma klasifikasi Gradient Boosting, Random Forest, Support Vector Machine, dan Naïve Bayes digunakan untuk memprediksi penyakit ginjal kronis. Jumlah atribut yang diklasifikasi adalah 24, 12, 6, 5, dan 4 atribut. Peningkatan nilai akurasi didapatkan pada pengurangan atribut dari 24 ke 12 dengan algoritma Naïve Bayes. Se- lain itu, diperoleh Support Vector Machine memiliki akurasi terbaik pada semua jumlah atribut, diikuti Gradient Boosting, Random Forest, dan Naïve Bayes. Pada klasifikasi 5 atribut, terlihat algoritma Support Vector Machine dan Gradient Boosting masih memiliki akurasi 1. Kelima atribut tersebut antara lain: hemoglobin, packed cell volume, serum creatinine, albumin, dan specifity gravity. Pengurangan atribut dapat meningkatkan akurasi dan dapat memudahkan proses prediksi karena jumlah atribut lebih sedikit.
Belum ada