
A Novel Adaptive Fuzzy MPPT Algorithm under Changing Atmospheric Conditions
Author(s) -
Zhang Yan,
Yajun Wang,
Jia-bao Chang
Publication year - 2021
Publication title -
journal of electrical engineering and automation
Language(s) - English
Resource type - Journals
ISSN - 2582-3051
DOI - 10.36548/jeea.2021.4.001
Subject(s) - maximum power point tracking , control theory (sociology) , duty cycle , algorithm , fuzzy logic , photovoltaic system , fuzzy control system , computer science , mathematics , engineering , voltage , control (management) , inverter , artificial intelligence , electrical engineering
The paper aims at the incompatibility between the speed and stability of the traditional MPPT algorithm and the imprecise search of the fuzzy control algorithm. An improved photovoltaic adaptive fuzzy control MPPT algorithm is proposed in this thesis. The solar irradiance changes dramatically and hence four kinds of fuzzy control algorithms with different input are modeled and simulated. The results indicate that the proposed fuzzy control algorithm using slope and slope change rate of P-U curve as input is the best. On this basis, dP/dU and duty cycle D(n-1) at n-1 moment are used as input to improve the tracking speed and optimal range. At the same time using shrinkage factor 1/I*|dP/dU| real-time adjustment of D(n-1) further shortens the optimal time of the algorithm. The algorithm is simulated and applied in a block. Simulation results show that the proposed algorithm is superior to the fuzzy control algorithm in steady-state oscillation rate, tracking speed and efficiency, and the algorithm is simple and easy to implement.