z-logo
open-access-imgOpen Access
Zinc uptake and distribution in ivy (Hedera helix L.) leaves
Author(s) -
Jana Marešová,
Miroslav Horník,
Martin Pipíška,
Jozef Augustín
Publication year - 2021
Publication title -
nova biotechnologica et chimica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.212
H-Index - 9
eISSN - 1339-004X
pISSN - 1338-6905
DOI - 10.36547/nbc.1289
Subject(s) - zinc , hedera helix , chemistry , transpiration , botany , nutrient , horticulture , hoagland solution , biology , photosynthesis , biochemistry , organic chemistry
Detached leaves of ivy (Hedera helix L.) were used as a model for the study of zinc uptake and transport in vascular plants. By the uptake via the surface of fully immersed leaves in 25 % Hoagland nutrient media (HM) spiked with 65ZnCl2 (50 μmol/dm3 ZnCl2), concentration in leaves 4.98 μg Zn/g (dry wt.), i. e. 2.6 μg Zn/dm2 leaf area after 7d exposition were obtained. By the uptake via immersed stalks of not immersed (transpiring) leaves concentrations up to 370 μg Zn/g (dry wt.) were obtained. When Zn enters into detached leaves via the surface of immersed leaf blades, zinc is uniformly distributed in leaf blades and leaf stalks. When zinc enters detached leaves via immersed stalks of non-immersed transpiring leaves, only small part of zinc is transported to leaf blades and the prevailing part remains in leaf stalks. Stalks act as a trap, able to prevent other leaf tissues against inhibitory effects of high Zn concentrations. Mineral nutrient salts in solutions mobilize Zn trapped in leaf stalks and facilitate Zn transport by transpiration stream to leaf blades, what means that Zn in stalks is bound in ion-exchageable forms.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here