
Задачи оптимального управления для билинейной системы специальной структуры
Author(s) -
В. А. Срочко,
В. А. Срочко,
В. Г. Антоник,
В. Г. Антоник,
Елена Владимировна Аксенюшкина,
E. V. Aksenyushkina
Publication year - 2020
Publication title -
itogi nauki i tehniki. seriâ, sovremennye problemy matematiki, fundamentalʹnye napravleniâ
Language(s) - Russian
Resource type - Journals
ISSN - 0233-6723
DOI - 10.36535/0233-6723-2020-183-130-138
Subject(s) - business
Рассмотрены три задачи оптимального управления (линейные, билинейные и квадратичные функционалы) для специальной билинейной системы с матрицей ранга $1$. Для первой задачи получены два варианта условий относительно начальных данных системы и функционала, при которых принцип максимума становится достаточным условием оптимальности. В этом случае задача становится очень простой: оптимальное управление определяется в процессе интегрирования фазовой или сопряженной системы (одна задача Коши). Затем рассматривается задача оптимизации билинейного функционала. Получены достаточные условия оптимальности граничных управлений без точек переключения. Эти условия представлены в виде неравенств для функций одной переменной (времени). Задача оптимального управления с квадратичным функционалом сводится к билинейному случаю на основе специальной формулы приращения.