
Peramalan Tinggi Gelombang Laut Dengan Metode Vector Autoregressive-Radial Basis Function Network (Var-Rbfn)
Author(s) -
Andreas Pedo Baluk,
Hasbi Yasin,
Sugito Sugito
Publication year - 2020
Publication title -
j statistika
Language(s) - English
Resource type - Journals
eISSN - 2654-7511
pISSN - 2089-0028
DOI - 10.36456/jstat.vol13.no2.a3270
Subject(s) - mathematics , statistics
Salah satu sektor maritim yang penting adalah transportasi laut yang berupapelayaran. Masyarakat dalam melaksanakan kegiatan pelayaran memerlukaninformasi cuaca harian seperti tinggi gelombang yang terjadi di tengah lautmelalui laporan yang dikeluarkan Badan Meteorologi, Klimatologi, dan Geofisi-ka(BMKG). Dalam hal ini adalah tinggi gelombang laut untuk wila-yah Pekalongan, Rembang dan Semarang. Memodelkan ketiga vari-abel yang saling berhubungan dapat digunakan pendekatan Vector Autoregressive (VAR). Namun terdapat pola nonlinier sehingga digunakan pemodelan Radial Basis Function Network (RBFN). Ber-dasarkan hasil analisis, diperoleh nilai MSE training untuk variable Pekalongan sebesar 0,04, variabel Rembang sebesar 0,06 ,variabel Semarang sebesar 0,0399 dan MSE testing untuk variabel Pekalon-gan sebesar 2,315, Rembang sebesar 1,0053 ,variabel Semarang 0,0334. Sedangkan untuk R Square diperoleh untuk variabel Pek-alongan sebesar 0,7601, variabel Rembang sebesar 0,8309 dan vari-abel Semarang sebesar 0,7978.