
Точные решения некоторых задач теории упругости о равновесии неоднородной по ширине анизотропной полосы
Author(s) -
В.И. Горбачев,
В.В. Гулин
Publication year - 2022
Publication title -
kompozity i nanostruktury
Language(s) - Russian
Resource type - Journals
ISSN - 1999-7590
DOI - 10.36236/1999-7590-2021-13-3-4-120-126
Subject(s) - business
В работе рассматривается плоская задача теории упругости для длинной, неоднородной по ширине полосы, находящейся в равновесии под действием «объёмных» нагрузок, а также нагрузок, распределённых на длинных сторонах. На торцах полосы нагрузки сводятся к векторам сил и моментов, приложенных в центре торцевых сечений. Задача решается в напряжениях, то есть искомые напряжения находятся из двух уравнений равновесия и одного уравнения совместности в напряжениях. Наряду с исходной задачей для неоднородной анизотропной полосы рассматривается точно такая же задача, только для однородной изотропной полосы (сопутствующая задача). Решение сопутствующей задачи существенно проще и во многих случаях получается в аналитическом виде. В настоящей работе показано, что напряжения в исходной задаче представляются в виде суммы сопутствующих напряжений и ряда по производным от сопутствующих напряжений. Коэффициенты при производных являются функциями тех же самых координат, что и компоненты тензора податливостей. Для них получены рекуррентные обыкновенные дифференциальные уравнения 4-го порядка, каждое из которых решается в общем виде. Получены точные решения нескольких задач об упругом равновесии длинной, неоднородной по ширине полосы.