z-logo
open-access-imgOpen Access
Pengenalan Pola Daun untuk Membedakan Tanaman Padi dan Gulma Menggunakan Metode Principal Components Analysis (PCA) dan Extreme Learning Machine (ELM)
Author(s) -
Ahmad Izzuddin,
Mochammad Wahyudi
Publication year - 2020
Publication title -
alinier
Language(s) - English
Resource type - Journals
ISSN - 2722-1245
DOI - 10.36040/alinier.v1i1.2521
Subject(s) - physics
Perkembangan ilmu pengetahuan serta pesatnya teknologi memberikan banyak manfaat bagi manusia dalam menjalankan aktifitasnya. Pemanfaatan ilmu pengetahuan dan teknologi tersebut di berbagai bidang termasuk di bidang pertanian. Pengembangan potensi pertanian suatu daerah dapat dioptimalkan melalui perkembangan ilmu pengetahuan dan teknologi itu sendiri. Salah satunya dengan pengenalan pola citra digital. Pengenalan pola bertujuan menentukan kelompok atau kategori pola berdasarkan ciri-ciri yang dimiliki oleh pola tersebut. Dengan kata lain, pengenalan pola membedakan suatu objek dengan objek lain. Dengan menggunakan metode ektraksi ciri Principal Component Analysis dan metode klasifikasi Extreme Learning Machine penulis melakukan penelitian untuk membedakan tanaman padi dan tanaman gulma. Implementasi PCA dan ELM mampu membedakan tanaman gulma dengan padi (Oryza sativa L) dalam hal ini gulma yang digunakan adalah jawan (Echinochloa cruss-galli) dan kremah (Alternanthera sessilis). Berdasarkan hasil pengujian yang dilakukan 8 kali running dengan merubah jumlah hidden neuron diperoleh nilai akurasi paling tinggi sebesar 91,67 % dengan menggunakan 10, 15, 30, 35, 40 hidden neuron, sedangkan untuk nilai akurasi paling rendah sebesar 58% dengan jumlah hidden neuron 5. Waktu yang dibutuhkan ELM untuk melakukan pelatihan dan pengujian sangat singkat 0.374 detik dan 0.500 detik pengukuran dilakukan dimulai dari running program sampai proses running program selesai.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here