
Fault Diagnosis and Prognosis Based on Deep Belief Network and Particle Filtering
Author(s) -
Guangxing Niu,
Shije Tang,
Zhichao Liu,
Guangbo Zhao,
Bin Zhang
Publication year - 2018
Publication title -
proceedings of the annual conference of the prognostics and health management society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.18
H-Index - 11
ISSN - 2325-0178
DOI - 10.36001/phmconf.2018.v10i1.540
Subject(s) - fault (geology) , deep belief network , particle filter , artificial intelligence , computer science , machine learning , deep learning , dynamic bayesian network , noise (video) , feature extraction , bayesian network , data mining , kalman filter , seismology , image (mathematics) , geology
Fault diagnosis and prognosis (FDP) plays more and more important role in industries FDP aims to estimate current fault condition and then predict the remaining useful life (RUL). Based on the estimation of health state and RUL, essential decisions on maintenance, control, and planning can be conducted optimally in terms of economy, efficiency, and availability. With the increase of system complexity, it becomes more and more difficult to model the fault dynamics, especially for multiple interacting fault modes and for fault modes that are affected by many internal and external factors. With the development of machine learning and big data, deep learning algorithms become important tools in FDP due to their excellent performance in data processing, information extraction, and automatic modeling. In the past a few years, deep learning algorithms demonstrate outstanding performance in feature extraction and learning fault dynamics. As emerging techniques, their powerful learning capabilities attract more and more attentions and have been extended to various applications. This work presents a novel diagnosis and prognosis methodology which combined deep belief networks (DBNs) and Bayesian estimation. In the proposed work, the DBNs are trained offline using available historical data. The fault dynamic model is then represented by the trained DBNs and modeling uncertainty is described by noise. The integration of DBNs with particle filtering is then developed to provide an estimation of the current fault state and predict the remaining useful life, which is very suitable and efficient for most nonlinear fault models. Experimental studies of lithium-ion batteries are presented to verify the effectiveness of the proposed solution.