Open Access
Software Test Data Generation based on Path Testing using Genetic Algorithms
Author(s) -
Tina Sachdeva,
Ashutosh Pattanaik
Publication year - 2020
Publication title -
international journal of recent technology and engineering
Language(s) - English
Resource type - Journals
ISSN - 2277-3878
DOI - 10.35940/ijrte.f9775.038620
Subject(s) - test suite , computer science , test management approach , test data , test case , algorithm , automation , test harness , software , path (computing) , test (biology) , genetic algorithm , data mining , software development , machine learning , engineering , software engineering , programming language , software construction , mechanical engineering , paleontology , regression analysis , biology
Test data generation is the task of constructing test cases for predicting the acceptability of novel or updated software. Test data could be the original test suite taken from previous run or imitation data generated afresh specifically for this purpose. The simplest way of generating test data is done randomly but such test cases may not be competent enough in detecting all defects and bugs. In contrast, test cases can also be generated automatically and this has a number of advantages over the conventional manual method. Genetic Algorithms, one of the automation techniques, are iterative algorithms and apply basic operations repeatedly in greed for optimal solutions or in this case, test data. By finding out the most error-prone path using such test cases one can reduce the software development cost and improve the testing efficiency. During the evolution process such algorithms pass on the better traits to the next generations and when applied to generations of software test data they produce test cases that are closer to optimal solutions. Most of the automated test data generators developed so far work well only for continuous functions. In this study, we have used Genetic Algorithms to develop a tool and named it TG-GA (Test Data Generation using Genetic Algorithms) that searches for test data in a discontinuous space. The goal of the work is to analyze the effectiveness of Genetic Algorithms in automated test data generation and to compare its performance over random sampling particularly for discontinuous spaces.