z-logo
open-access-imgOpen Access
Robust Skin lesion Classification via Machine Intelligence
Author(s) -
P G Thakar,
Siddhivinayak Kulkarni
Publication year - 2020
Publication title -
international journal of recent technology and engineering
Language(s) - English
Resource type - Journals
ISSN - 2277-3878
DOI - 10.35940/ijrte.f9519.038620
Subject(s) - artificial intelligence , computer science , convolutional neural network , deep learning , pattern recognition (psychology) , feature extraction , artificial neural network , contextual image classification , machine learning , image (mathematics)
Skin cancer is typically growth and spread of cells or lesion on the uppermost part or layer of skin known as the epidermis. It is one of rarest and deadliest found type of cancer, if undetected or untreated at early stages may lead in patient’s demise. Dermatologists use dermatoscopic images to identify the type of skin cancer by identification of asymmetry, border, colour, texture & size mole or a lesion. This method of detection can also be applied using machine learning techniques for classification these images into respective of cancer. There have been various studies and techniques which have been proposed various researchers across the globe in order to improve the classification of these dermatoscopic images. The proposed studies primarily focus on classification of dermatoscopic images based on lesion’s colour and texture features followed by intelligent machine learning approaches. Advances in these machine intelligent approaches such as deep neural networks and convolutional neural networks can be applied on dermatoscopic images to identify their features. A CNN based approach provides a additional accuracy over feature extraction as the algorithm is applied on pixel in overall image size. CNN also provides the ability to perform huge chunk of mathematical operations which is basic requirement in case of image processing and machine learning. The CNN based algorithm can be used to classify the dermatoscopic images with better efficiency and overall accuracy with having power of artificial-neural-network.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here